skip to main content


Search for: All records

Creators/Authors contains: "Mutuku, Francis M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Most vector control activities in urban areas are focused on household environments; however, information relating to infection risks in spaces other than households is poor, and the relative risk that these spaces represent has not yet been fully understood. We used data-driven simulations to investigate the importance of household and non-household environments for dengue entomological risk in two Kenyan cities where dengue circulation has been reported. Fieldwork was performed using four strategies that targeted different stages of mosquitoes: ovitraps, larval collections, Prokopack aspiration, and BG-sentinel traps. Data were analyzed separately between household and non-household environments to assess mosquito presence, the number of vectors collected, and the risk factors for vector presence. With these data, we simulated vector and human populations to estimate the parameter m and mosquito-to-human density in both household and non-household environments. Among the analyzed variables, the main difference was found in mosquito abundance, which was consistently higher in non-household environments in Kisumu but was similar in Ukunda. Risk factor analysis suggests that small, clean water-related containers serve as mosquito breeding places in households as opposed to the trash- and rainfall-related containers found in non-household structures. We found that the density of vectors (m) was higher in non-household than household environments in Kisumu and was also similar or slightly lower between both environments in Ukunda. These results suggest that because vectors are abundant, there is a potential risk of transmission in non-household environments; hence, vector control activities should take these spaces into account. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. null (Ed.)
    Abstract Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28–85% for vectors, 44–88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections. 
    more » « less